

Earth Observation Telescope at L2 Draft Final Report

Power Subsystem

Bob Cataldo / Tim Sarver-Verhey GRC

Power System Overview

- Requirements
 - Projected power level = 3 kWe for each spacecraft
 - 100 % Duty cycle required
 - Mission duration = 10 years
- Considerations
 - Spacecraft flying in reduced Solar Illumination region in order to image solar annulus
 - Reduced solar insolation determined & incorporated into calculations
 - Some concern about further reduction due to attenuation at UV end of spectrum
 - Also, solar illumination expected to be varying due to perturbed motion around target point
 - System design would have to incorporate capability to handle maximum illumination but availability of max. power level cannot be assumed
 - Occlusion of critical spacecraft surfaces by PV arrays on secondary spacecraft not acceptable
 - Therefore, available array area on secondary spacecraft highly constrained

Power System Design Drivers

- 3 kWe for spacecraft bus and thruster operation on the primary and secondary spacecraft
- Minimize power system size and mass
- Reduced solar intensity within Earth's anti-umbra
 - Only $\sim 10\%$ that of Earth's orbit values
- Integration of power system unobtrusive to spacecraft operation
 - Large array size interferes with spacecraft operations
- High efficiency power conversion to reduce isotope quantities
- Nuclear power source would require additional launch and separate spacecraft to fly in formation.
 - Scenario would be to beam power to both primary and secondary spacecraft from reactor flying in formation
 - Additional propellant and thrusters needed

System Trades

- Two methods of power generation considered for L2 telescope
 - PV arrays
 - Radioisotope Power System (RPS)
- Most feasible for mission specifications
 - PV arrays attractive because there is continual, albeit attenuated, illumination at target location; also, lower cost
 - RPS attractive because of continuous duty cycle and relatively small system size; also no impact on imaging of solar annulus
- Power Systems Trades performed:
 - At 3 kWe, RPS lowest mass option
 - Operational considerations also advantageous over PV arrays
 - Power available earlier in mission
 - Reduced pointing requirements

Power Systems Options

Results:

- RTG only option lowest mass option if PV operation degraded in Anti-umbra
- Benefit to keeping PV array on secondary manifests only in an Advanced PV environment with no degradation - Further investigation of PV arrays at this location not recommended
- PV option lightest if advanced arrays used in non-degraded environment
- Minimal number of RTG units better choice than lowest mass due to required support structure

PV RTG Support Structure

Stirling Converter

Dual opposed engines coupled to heat source

Basic Stirling Operation

- Heat energy is supplied to to heater head (Th) typically via isotope, solar or reactor energy.
- This energy is converted to the oscillating motion of a "free motion" piston/alternator generating electricity.
- Radiators provide the sink for waste heat removal.

Power Systems Issues

- RPS selected as best option for primary and secondary spacecraft
 - RPS designs incorporated into spacecraft design
 - Primary & Secondary
- Issues:
 - Size of photovoltaic array makes integration difficult and interferes with secondary spacecraft. Array on primary spacecraft interferes with thruster operation.
 - Increases in power requirements can result in significant changes in RPS design decision
 - Stirling and Brayton RPS should be investigated.
 - If power requirements escalate for thruster operation, free-flying reactor system may become option due to increased usage of isotope material (current 3 kWe design uses same amount of fuel as Cassini mission).

Stirling Radioisotope Roadmap

1 kWe Stirling Radioisotope Unit

WBS Elements	Yr 1	Yr 2	Yr 3	Yr 4	Yr 5
System Requirements/Design					
Converter Development & Testing					
Controller Specification & Integration					
Engineering SRG Design & Analysis					
Engineering SRG Fab. & Testing					
NEPA & Safety Test Support					
Quality Assurance & Reliability					
Vehicle Integration					

Assumes development of Stirling Radioisotope Generator 110 Unit

Technology Roadmaps

• Main technologies required for Power

- Power conversion engine
- Heat source/conversion
 interface
- Light weight radiators

* Many of these technologies are currently under development in NASA sponsored programs

Recommendations

- High efficiency power converters to reduce isotope needed
 - Stirling(scale up from SOTA)
 - Brayton(scale down from SOTA)
 - High efficiency thermoelectrics (TRL 2)
- Higher temperature materials to reduce radiator size and mass
- Light weight radiator materials
- Light weight thruster power processing unit